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I. INTRODUCTION

Shock initiation of the explosive charge is a major mechanism by which deto-
nation propagates from round to round (donor to acceptor) in a munition store.
Prevention of detonation propagation is a main thrust toward reducing the
vulnerability of stored ammunition!™3 With the availability of hydrodynamic
computer codes which incorporate models for the shock initiation of high ex-
plosives and in order to obtain a better understanding of the phenomenon of
round-to-round propagation of detonation, including the effects of pertinent
parameters on vulnerability, we have undertaken a numerical study using a
two-dimensional analog of the problem. The two-dimensional code used is 2DE,
which was developed at the Los Alamos National Laboratory and incorporates the
Forest Fire model for shock initiation of explosives. This tool was used to
determine the effects on sensitivity of such parameters as donor initiation site;
interround spacing; shield configuration, thickness and material; as well as
explosive sensitivity. In these computations, we have restricted our attention
to those cases in which the propagation mechanism is classical shock initiation
and have explicitly excluded other mechanisms which may be active in actual cases.

II. PROBLEM DESCRIPTION

The two-dimensional analog of the interround propagation problem used in
our computations is illustrated in Figure 1. The model consists of a donor
round, in which detonation is initiated, and an acceptor round which responds
to the loading applied by the donor. The donor may be initiated at any of a
number of sites, the interround separation distance and the casing thickness
may be varied, various shields may be placed between the rounds, and the sensi-
tivity of the acceptor explosive fill may be altered.

We have considered initiation sites at the center and far side of the donor
round and interround separation distances, AR, of up to one round radius
(although actual rounds may begin to break up into fragments before expanding
this far and this effect is not included in the hydrodynamic model). The
dimensions used are representative of the 105-mm projectile (Ro = 52.5 mm) with

a casing thickness, r, of 8 mm. The effects of different thicknesses, h, of
Plexiglas shielding were considered. Different shield materials were also
studied. Composition-B (comp-B) was used as the donor explosive in all our

lHove, P. M., "The Phenomenology of Interround Communiocation and Techniques for
Prevention," Ballistic Research Laboratory Technical Report ARBRL-TR-02048,
March 1978 (AD A054373).

2gowe, P. M. and Collis, D., "Effectiveness of Plastic Shielde in Prevention of
Propagation of Reaction Between Compartmentalised Warheads," Ballietic Regearch
Laboratory Memorandum Report ARBRL-MR-02827, April 1978 (AD B027466L).

3Howe, P. M., "An Approach to the Development of Hardened Munitions, Part A -
Warheads,” Ballistic Research Laboratory Special Publication ARBRL-SP-00010,
June 1979 (AD B038925L).
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Geometry used in Interround Detonation Propagation Computations
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] computations. Except for our studies of explosive sensitivity it was also used

¥ as the acceptor explosive. In order to assess the effects of reducing sensi-
e tivity we considered an acceptor filled with TATB.
iy We often found it instructive to observe the loading on the acceptor with

an inert fill and we investigated the effects of initiation site, interround
spacing and, in one case, shielding, suppressing the Forest Fire model in the
computations. Reactive acceptors were considered for study of shielding effective-
ness and explosive sensitivity. In general, 2DE appears to predict shock
pressures which are considerably higher than those measured experimentally or
predicted by other computational means(d problem which we have addressed). For
R this reason, we were unable to suppress initiation of the acceptor and had to
rely on other measures of sensitivity reduction to assess the effects of param-
N eter changes. In the case of inert acceptors, observation of p(t) and fpz(t)dt
. associated with the arrival of the principal shock at the explosive-casing
) interface at the symmetry plane were made and were used to characterize acceptor
response. The latter parameter is a measure of the energy available for hot
spot formation in the shock. In the case of reactive acceptors, buildup to
R detonation was followed in the distance-time and shock pressure-time planes,
.. except when the buildup occurred off the symmetry plane due to shock reflection
X at the casing in reduced sensitivity acceptors.

SaLaw e e T

ITI. DESCRIPTION OF 2DE

X The 2DE code was developed at the Los Alamos National Laboratory and is a

- two-dimensional, eulerian reactive code' > It requires constant grid spacing
throughout the computational region and provides only linear artificial viscosity.
For our problem, it was necessary to describe the initial geometry using rec-
tangular elements. Thus, the circular shapes are not perfectly represented.

The code makes use of the C-J volume burn model to account for detonation in

the donor and the Forest Fire model to describe buildup to detonation in the

acceptor when desired.

DR SELCE M

IV. DISCUSSION OF RESULTS

A AL

General Features of the Flow Field with Inert Acceptors

L

The flow field determined in the two-dimensional computations with inert
acceptors is most easily observed in the distance-time plane, where the distance
is measured along the symmetry plane. Shock patterns produced in several con-
figurations are illustrated in Figure 2.

N “Mader, C. L., Numerical Modeling of Detonations, University of California
. ) Pregs, 1979.

> 5Kershr.ter, J. D. and.Mader, C. L., "2DE: A Two Dimensional Contiruous
. Bulerian Hydrodynamic Code for Computing Multicomponent Reactive Hydrodynamic

- Problems, " Los Alamos Scientific Laboratory Technical Report LA-4846
X March 1972, f Y P ’
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The shock patterns produced by far-side initiation of the donor with rounds
in contact may be compared to those obtained with separated rounds in Figures
2a and 2b. In both cases, the detonation propagates smoothly across the donor
from its far side. When the donor and acceptor are in contact, the principal
shock propagating into the acceptor is directly transmitted from the initial
detonation in the donor. When the donor and acceptor are separated, the prin-
cipal shock is generated by the impact of the donor casing on the acceptor. The
transmitted shock which has propagated across the air gap is quite weak (only
about 0.1 GPa, depending on the distance travelled) and is insufficient to
initiate the acceptor. In either case, shock reverberations in the domor and
acceptor casings lead to multiple shock loading of the acceptor explosive. The
principle shock may be readily identified by its strength and persistence,
however, and this is the shock which builds to detonation in the reactive cases.

The shock patterns produced by center initiation with separated rounds is
shown in Figure 2c. The principal difference between center and side initiation
is the nature of the shock patterns in the donors. In the center initiation case,
the detonation wave proceeds outward from the initiation site. When the deto-
nation reaches the casing, one shock wave propagates through the shell wall and
another is reflected back into the explosive products. The transmitted shock
propagates through the donor casing, the air gap, the acceptor casing, and
finally into the acceptor explosive. The reflected shock propagates back to the
center of the donor, which is still an axis of symmetry with respect to donor
shock propagation. Here it is reflected outward, producing a second diverging
shock. In the meantime, the donor casing is accelerated outward until an impact
with the acceptor casing occurs. At this point, strong shock waves are generated
and propagate into the donor's detonation products as well as the acceptor explo-
sive. Multiple shocks are observed due to reverberations within the casings.
Generally, the first two of these shocks are of principal interest. The second
shock is stronger than the first and overtakes it after a very short distance.

At a particular interround separation distance, the casing impact will occur at
the same time that the second diverging wave arrives at the outer surface. The
reinforcement occurring in this event will produce especially severe shock loading
in the acceptor. Except in the event of this reinforcement, far-side initiation
is expected to produce stronger shocks in the acceptor than are observed for
center initiation since the momentum of all the explosive products is directed
generally toward the acceptor. Symmetry is absent for side initiation and no
reflected divergent wave appears in the donor. The response upon impact is quite
similar, however, just somewhat more severe.

Finally, the shock pattern produced by center initiation with a shield between
the rounds is shown in Figure 2d. In this case, the shield completely fills the
space between the round along the line of centers. The shock loading on the ac-
ceptor is similar to that for rounds in contact. The principal shock is again
directly transmitted but its amplitude may be attenuated by the shield. Shock
reverberations, although not shown in the figure, are still present.

Effects of Initiation Site and Interround Separation

The principal shock pressures and associated fpzdt values obtained from
2DE computations with inert acceptors are plotted versus interround separation
for both center and far-side initiation in Figure 3. Each of these parameters
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appears to approach a common value at large separations. Reinforcement by the
divergent shock in the donor occurs at an interround separation somewhere between
0.4 and 0.6 round radius (ROJ. In this region, the initiation stimulus is only

slightly more severe in the center initiation case. The results indicate that
far-side initiation, which represents a more realistic scenario for the inter-
round propagation of detonation, may be regarded as a worst case. The shock
initiation hazard appears to be greatest when the interround separation is about
0.3 R_.
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Effects of Shieldiqg

Continuing our study of inert acceptors, we made a single two-dimensional
computation with an interround separation of one-tenth round radius (5 mm), a
rectangular Plexiglas shield completely filling the space between the rounds,
and a center initiated donor. The results of this computation may be compared
to those for the similar case without the shield. In Figure 4, the pressure
history just inside the acceptor casing in the first pure explosive cell is
plotted for both cases. It should be noted that, due to the eulerian represen-
tation, it is necessary to periodically shift attention to a neighboring cell
as the casing intrudes into the observed cell. This causes an artifical spike
to be plotted. While the pressure of the initial shock is slightly higher in
the shielded case, the pressure of the principal shock is significantly lower.
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We have also computed fp dt including the first two shocks in each case and the
! unshielded case produces a much higher value. The results indicate a substantial
%) reduction in sensitivity even with a very thin plastic shield.

The general sequence of events revealed with reactive acceptors is illustrated
; in the sequence of plots in Figure 5. Here pressure is plotted versus the two-

) dimensional physical plane of the problem at various times. Plotting of pressure
ot in the steel casing has been suppressed for clarity. In Figure 5a at 4 us, the
e donor round has been initiated at its far side and the detonation wave has begun
W) to propagate across the round. In Figure 5b at 16 ps,the donor explosive has

[ been completely consumed and a shock wave is being transmitted through the
shield. 1In Figure 5c at 24 us, the shock wave has propagated into the acceptor
explosive. Shortly thereafter at 26 us, the shock has begun to build in strength
due to partial reaction of the explosive. This is illustrated in Figure Sd.
Finally, the shock has grown to full detonation at 28 us as shown in Figure 5e.

oy ':'.."';"_- »

The way in which shielding influences the initiation process was assessed
considering cases with reactive acceptors. Four computations have been completed
. with an interround separation of one-half round radius (25 mm), utilizing Plexi-
.- glas shields filling 50, 75, 87.5 and 100 percent of the space between rounds.
£ The shock pressure history obtained in each case is plotted in Figure 6 as the
- L shock builds to detonation. The histories for h/AR = 0.50, 0.75 and 0.875 are
o virtually identical while the shock produced at h/AR = 1.00 builds to detonation
- more slowly. When the space between the rounds is not completely filled, impacts
occur at the symmetry plane and the shock enters the acceptor at a pressure of
seven to ten GPa. Buildup to detonation occurs rapidly. Wwhen, on the other
hand, the space is completely filled by the shield, normal impact is eliminated
and the shock enters at a pressure of two to three GPa. Buildup then occurs
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relatively slowly until the seven to ten GPa range is reached, after which
buildup to detonation is rapid and parallels the stronger shock buildup.

As we noted previously, these pressures are considerably higher than those we
would expect to see and the detonation pressure is in excess of the C-J value.

We have also studied the buildup produced with shields of various thickness
which completely fill the space between rounds. Here our interpretation of the
results has been severely hampered by the failure to suppress sympathetic deto-
nation of the acceptor. The buildup to detonation of shocks transmitted through
these shields is shown in Figure 7. The variation in initial shock pressure
is quite small and very little difference between cases is noticeable except
for the thinnest shield which affords very little protection. The results
appear to indicate that protection is optimized for shields between 0.4 and 0.75
round radii thick and shield performance is worse both above and below this
thickness. However, results of this type provide a rather unsatisfactory repre-
sentation of the sensitivity reduction to be obtained by this or any other
parameter variation.

Shield materials considered include Plexiglas, teflon, tuballoy, steel,
and alumimum. The results are presented in Figure 8. The order of effectiveness
. of these materials is consistent with the initial shock pressure they produce.
The best results were produced by Plexiglas, while the denser metals (steel and
tuballoy) performed poorly. The results for aluminum and teflon were in the
intermediate range. Some experiments, however, seem to indicate that steel
does provide considerable protection. This result does not appear consistent
with the shock initiation mechanism and instances where steel shields have been
effective may be cases in which other initiation mechanisms are active.

Since the shock pressure predictions of the 2DE computations are erroneously
high and the Forest Fire model is activated prematurely, we were unable to pre-
dict protect on of the acceptor with shielding. This is an unfortunate limitation
since a determination of the shield thickness required for protection as a
function of any parameter of interest would be more useful, particularly since
the differences in initial shock pressure produced by shields of varying thickness
are small.

Effects of Reducing Sensitivity

In one case, we replaced the comp-B in the acceptor with the less sensitive
explosive, TATB. The results of those computations revealed that no buildup
to detonation occurred along the symmetry plane as for comp-B. In this case,
the shock wave propagates through the acceptor explosive without producing
reaction as shown in Figure 9a. In the more remote portion of the acceptor,
the shock propagates into a converging channel formed by the steel casing.
The reflection which occurs at the point of interaction between the shock and
the casing leads to increased pressures as shown in Figure 9b. This eventually
leads to initiation of detonation at this point as shown in Figures 9c and 9d.
Presumably, as the explosive sensitivity is further reduced, the initiation
point, requiring higher pressure, would move around the casing to the far side
and ultimately initiation would be entirely suppressed. The same result is
expected for any explosive as the initiation stimulus is reduced. The normal
reflection off the back of the shell casing will always produce significant
pressures. It seems unlikely that initiations of this kind actually occur

15
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frequently since protection against them would be virtually impossible and
successful shield designs have been developed. In this case, the reduction in
sensitivity associated with the compaction produced by the principal shock wave
may play a role which is not reflected in the present model.

V. EVALUATION OF 2DE

The principal advantage of 2DE is its incorporation of the Forest Fire model.
Otherwise, the code lacks versatility in zoning capabilities and geometric re-
presentations. Its eulerian formulation does not facilitate following material
history, which is important to the initiation process. Studies in which knowl-
edge of the inert response alone is sufficient should certainly be carried out
using a more sophisticated code. Use of 2DE is appropriate when a reactive model
is required if the problems we encountered with high shock pressures can be elim-
inated. The reactive model is most useful when it properly predicts suppression
of sympathetic detonation.

In running 2DE, we used artificial viscosity parameter values recommended by
Los Alamos National Laboratory personnel who had successfuly employed the code
for a number of years. We suspected that these values might be incorrect and
be the cause of our shock pressure difficulties. Since the shocks in our prob-
lems are immediately followed by rarefactions, insufficient artificial viscosity
and an attendant pressure overshoot are not readily apparent in the results.
Therefore, we chose a sample problem in which we anticipated a flat, relatively
long duration shock of known amplitude.

The problem, illustrated in Figure 10, is that of a 10 mm thick steel flyer
plate striking a target (steel or comp-B) at 1,000 m/s. Figure 11a shows the
pressure-distance profile obtained with the recommended viscosity and a steel
target. The anticipated shock pressure is 21 GPa. The computational results
oscillate about this value with a peak overshoot of about 7 GPa. With an in-
crease in artificial viscosity of a factor of one hundred, a more adequate re-
presentation of the shock was obtained as shown in Figure 11b. Figure 12a shows
results obtained with the recommended artificial viscosity and an inert comp-B
target. Here a pressure overshoot of some 2 GPa occurs. This is sufficient to
prematurely activate the Forest Fire model. As shown in Figure 12b, an increase
of only a factor of ten in artificial viscosity is sufficient to effectively
eliminate the overshoot. It should be noted that since 2DE uses linear artificial
viscosity any viscosity increase results in additional smearing of the shock and
intensifies requirements for fine zoning. Additional computations with reactive
comp-B showed an increase in the critical velocity required for initiation from
about 450 m/s to about 550 m/s when the artificial viscosity was increased.

With these corrected values of artificial viscosity in hand, we re-ran the
shielding configuration which provided the best protection, a one-half round
radius separation filled with Plexiglas. Shock buildup is compared with the
original computation in Figure 13. The shock peak in the acceptor explosive
initially appears at a slightly later time due to increased smearing. The pres-
sure is slightly lower but detonation of the acceptor still results. The in-
creased articifical viscosity appears to produce a better representation of the
detonation with pressures closer to the C-J value of 29.4 GPa.
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Since reduction of the pressurc to acceptable levels does not suppress
initiation, the assumption that this problem can be modeled accurately enough
in two dimensions must be called into question. The two-dimensional model
consists of a pair of infinitely long cylindrical rounds, one of which is
initiated along an infinite line. 1In fact, real rounds are of finite length
and donors are initiated at a point. Thus the longitudinal curvature of the
donor detonation and casing.acceleration as well as the influence of rarefactions
which issue from the upper and lower ends of the acceptor are not included. This
may be sufficient to explain the difference between the computations and experi-
mental observations. Nonetheless, it should be noted that sympathetic detonation
can still be suppressed by decreasing the energy of the donor, the sensitivity
of the acceptor or both.
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VI. SUMMARY

POk P TART
LR Bt L DAL

The two-dimensional numerical simulation of the problem of interround propa-
gation of detonation revealed a very complex flow field. We found that for rounds
- in contact or separated by a shield completely filling the space between them,

x the principal shock entering the acceptor was directly transmitted from the
donor detonation,while for configurations including air/spaces the principal
shock was impact generated and had greater strength.

The results indicate that, in general, far-side initiation of the donor re-
presents a worst case. This is a realistic representation of the process by

. which detonation transfer occurs in mass detonation. For rounds separated only
. by an air space, the shock initiation hazard is maximum at an intermediate inter-
~ round separation. Inert computations with a thin plastic shield showed the re-
markable effectiveness of the shield in reducing the shock loading on the acceptor.
Reactive computations showed the process of buildup to detonation and indicated
that a shield which completely fills the gap and eliminates normal impacts affords
the greatest protection. When the explosive sensitivity is sufficiently reduced,
the acceptor is no longer initiated along the centerline by buildup of the prin-
cipal shock. Rather, initiation occurs at a point along the rear casing interface
where shock reflection has raised the pressure sufficiently.

atata

. Since 2DE is known to produce results which compare well with experi-

- ments when the geometry is accurately represented, its failure to predict
protection of the acceptor, even when the artificial viscosity problems were
corrected, is most likely due to the overly severe loading associated with

a two-dimensional representation of the problem. We feel that nrediction

of acceptor protection would greatly enhance our ability to assess shielding

. effectiveness and the effects of parameter variations and that this can be

: obtained by considering a less energetic donor and/or a less sensitive acceptor.
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